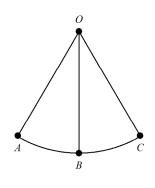

Name:		

Geometry Midterm Review 19-20

Multiple Choice

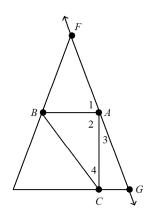
Identify the choice that best completes the statement or answers the question.

2. Find the best sketch, drawing, or construction of a segment congruent to JK.

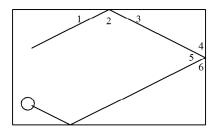


Class: _____ Date: ____

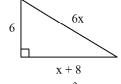
3. K is the midpoint of JL. JK = 6x and KL = 3x + 3. Find JK, KL, and JL.a. JK = 1, KL = 1, JL = 2c. JK = 12, KL = 12, JL = 6b. JK = 6, KL = 6, JL = 12d. JK = 18, KL = 18, JL = 36


ID: A

4. The tip of a pendulum at rest sits at point *B*. During an experiment, a physics student sets the pendulum in motion. The tip of the pendulum swings back and forth along part of a circular path from point *A* to point *C*. During each swing the tip passes through point *B*. Name all the angles in the diagram.


a. ∠AOB, ∠BOC
b. ∠AOB, ∠COB, ∠AOC

- c. ∠AOB, ∠BOA, ∠COB, ∠BOC
 d. ∠OAB, ∠OBC, ∠OCB
- 5. Tell whether $\angle 1$ and $\angle 3$ are only adjacent, adjacent and form a linear pair, or not adjacent.



- a. not adjacent
- b. only adjacent
- c. adjacent and form a linear pair

6. A billiard ball bounces off the sides of a rectangular billiards table in such a way that $\angle 1 \cong \angle 3$, $\angle 4 \cong \angle 6$, and $\angle 3$ and $\angle 4$ are complementary. If $m\angle 1 = 26.5^{\circ}$, find $m\angle 3$, $m\angle 4$, and $m\angle 5$.

- a. $m \angle 3 = 26.5^{\circ}; m \angle 4 = 63.5^{\circ}; m \angle 5 = 63.5^{\circ}$
- b. $m \angle 3 = 26.5^{\circ}; m \angle 4 = 63.5^{\circ}; m \angle 5 = 53^{\circ}$
- c. $m \angle 3 = 63.5^{\circ}; m \angle 4 = 26.5^{\circ}; m \angle 5 = 53^{\circ}$
- d. $m \angle 3 = 26.5^{\circ}; m \angle 4 = 153.5^{\circ}; m \angle 5 = 26.5^{\circ}$
- 7. Find the perimeter and area of the figure.

- a. perimeter = $6x^2 + 14$; area = 3x + 24
- b. perimeter = 7x + 14; area = 3x + 24

c. perimeter = 7x + 14; area = 6x + 48d. perimeter = 7x + 14; area = $6x^{2} + 14$

- 8. *M* is the midpoint of AN, A has coordinates (-6, -6), and *M* has coordinates (1, 2). Find the coordinates of N.
 a. (8, 10)
 c. (-2¹/₂, -2)
 - b. (-5, -4) d. $(8\frac{1}{2}, 9\frac{1}{2})$

9. Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from T(4, -2) to U(-2, 3).

a.	-1.0 units	с.	0.0 units
b.	3.4 units	d.	7.8 units

 10. Complete the conjecture.

 The sum of two odd numbers is _____.

 a. even
 c. sometimes odd, sometimes even

 b. odd
 d. even most of the time

_____ 11. Show that the conjecture is false by finding a counterexample.

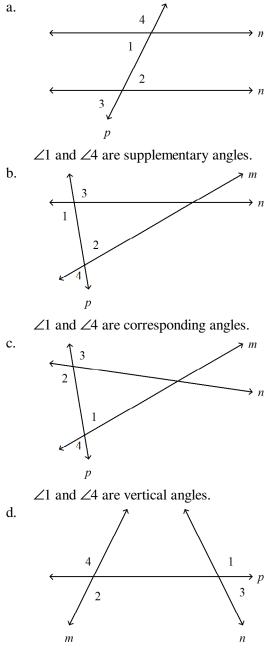
If a > b, then $\frac{a}{b} > 0$. a. a = 11, b = -3b. a = 11, b = 3c. a = 3, b = 11d. a = -11, b = 3 Name: ___

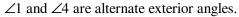
 12.	How many true conditional statements may be written using the following statements? <i>n</i> is a rational number. <i>n</i> is an integer. <i>n</i> is a whole number.
	a. 2 conditional statements c. 4 conditional statements
	b. 3 conditional statements d. 5 conditional statements
 13.	What is the truth value of the biconditional formed from the conditional, "If <i>B</i> is the midpoint of <i>A</i> and <i>C</i> , then $AB = BC$." Explain. a. The conditional is true.
	The converse, "If $AB = BC$ then B is the midpoint of \overline{AC} " is false.
	Since the conditional is true but the converse is false, the biconditional is false.
	b. The conditional is true.
	The converse, "If $AB = BC$ then B is the midpoint of AC" is true.
	Since the conditional is true and the converse is true, the biconditional is true.
	c. The conditional is false.
	The converse, "If $AB = BC$ then B is the midpoint of AC" is false. Since the conditional is false and the converse is false, the biconditional is true.
	d. The conditional is false.
	The converse, "If $AB = BC$ then B is the midpoint of \overline{AC} " is true.
	Since the conditional is false and the converse is true, the biconditional is false.
 14.	A gardener has 26 feet of fencing for a garden. To find the width of the rectangular garden, the gardener uses the formula $P = 2l + 2w$, where P is the perimeter <i>l</i> is the length, and w is the width of the rectangle. The

14. A gardener has 26 feet of fencing for a garden. To find the width of the rectangular garden, the gardener uses the formula P = 2l + 2w, where P is the perimeter, l is the length, and w is the width of the rectangle. The gardener wants to fence a garden that is 8 feet long. How wide is the garden? Solve the equation for w, and justify each step.

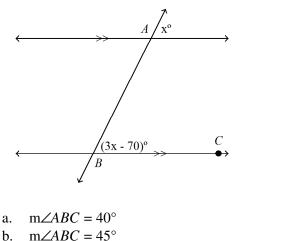
P = 2l + 2w	Given equation
26 = 2(8) + 2w	[1]
26 = 16 + 2w	Simplify.
-16 = -16	Subtraction Property of Equality
10 = 2w	Simplify.
$\frac{10}{2} = \frac{2w}{2}$	[2]
5 = w	Simplify.
<i>w</i> = 5	Symmetric Property of Equality

- a. [1] Substitution Property of Equality[2] Division Property of EqualityThe garden is 5 ft wide.
- b. [1] Simplify[2] Division Property of Equality The garden is 5 ft wide.
- c. [1] Substitution Property of Equality[2] Subtraction Property of EqualityThe garden is 5 ft wide.
- d. [1] Subtraction Property of Equality[2] SimplifyThe garden is 5 ft wide.

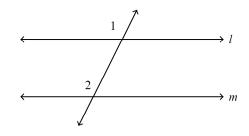

Name: _


15. Two angles with measures $(2x^2 + 3x - 5)^\circ$ and $(x^2 + 11x - 7)^\circ$ are supplementary. Find the value of x and the measure of each angle.

	e		
a.	$x = 5; 60^{\circ}; 30^{\circ}$	с.	<i>x</i> = 5; 60°; 120°
b.	$x = 6; 85^{\circ}; 95^{\circ}$	d.	<i>x</i> = 4; 40°; 90°


- 16. Use *p* and *q* to find the truth value of the compound statement $p \land q$. *p* : Blue is a color.
 - q: The sum of the measures of the angles of a triangle is 160°.
 - a. Since *p* is true, the conjunction is true.
 - b. Since q is true, the conjunction is true.
 - c. Since p and q are true, the conjunction is true.
 - d. Since q is false, the conjunction is false.

17. Draw two lines and a transversal such that ∠1 and ∠2 are alternate interior angles, ∠2 and ∠3 are corresponding angles, and ∠3 and ∠4 are alternate exterior angles. What type of angle pair is ∠1 and ∠4?



18. Find m $\angle ABC$.

- c. $m \angle ABC = 35^{\circ}$ d. $m \angle ABC = 50^{\circ}$
- 19. Use the Converse of the Corresponding Angles Postulate and $\angle 1 \cong \angle 2$ to show that $l \parallel m$.

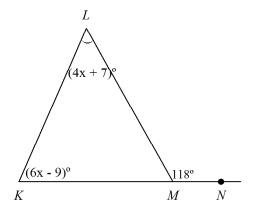
- a. $\angle 1 \cong \angle 2$ is given. From the diagram, $\angle 1$ and $\angle 2$ are corresponding angles. So by the Converse of the Corresponding Angles Postulate, $l \parallel m$.
- b. $\angle 1 \cong \angle 2$ is given. From the diagram, $\angle 1$ and $\angle 2$ are alternate interior angles. So by the Converse of the Alternate Interior Angles Postulate, $l \parallel m$.
- c. By the Converse of the Corresponding Angles Postulate, $\angle 1 \cong \angle 2$. From the diagram, $l \parallel m$.
- d. $\angle 1 \cong \angle 2$ is given. From the diagram, $\angle 1$ and $\angle 2$ are corresponding angles. So by the Corresponding Angles Postulate, $l \parallel m$.
- 20. Write the equation of the line with slope 2 through the point (4, 7) in point-slope form.

a.	y = 2x - 1	с.	y - 4 = 2(x - 7)
b.	y = 2x + 7	d.	y - 7 = 2(x - 4)

Name:

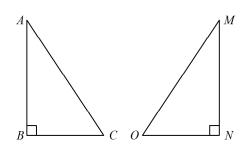
21. Both stores see the same number of people. How many customers must both stores have before the total amount of money they have is equal?

	Jala's Yogurt Shop	Ela's Salad Store
Starting Money	\$20	\$30
Money per Customer	\$6	\$4

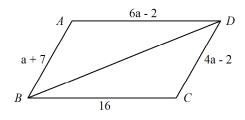

a. 5 customers

b. \$50

c. 20 cents


d. 20 customers

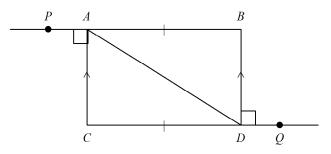
22. Find m $\angle K$.



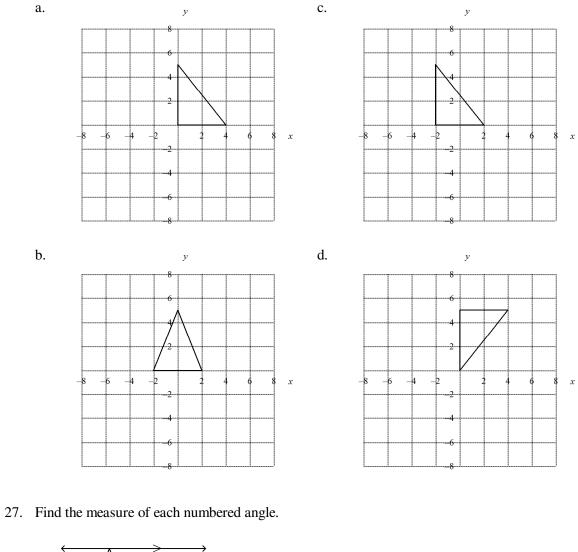
a.	$m \angle K = 63^{\circ}$	c.	m∠ <i>K</i> = 79°
b.	$m \angle K = 55^{\circ}$	d.	$m \angle K = 39^{\circ}$

 $_$ 23. Given: $△ABC \cong △MNO$ Identify all pairs of congruent corresponding parts.

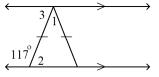
a. $\angle A \cong \angle M$, $\angle B \cong \angle N$, $\angle C \cong \angle O$, $\overline{AB} \cong \overline{MN}$, $\overline{BC} \cong \overline{NO}$, $\overline{AC} \cong \overline{MO}$ b. $\angle A \cong \angle M$, $\angle B \cong \angle O$, $\angle C \cong \angle N$, $\overline{AB} \cong \overline{MN}$, $\overline{BC} \cong \overline{NO}$, $\overline{AC} \cong \overline{MO}$ c. $\angle A \cong \angle M$, $\angle B \cong \angle N$, $\angle C \cong \angle O$, $\overline{AB} \cong \overline{MO}$, $\overline{BC} \cong \overline{NO}$, $\overline{AC} \cong \overline{MN}$ d. $\angle A \cong \angle O$, $\angle B \cong \angle N$, $\angle C \cong \angle M$, $\overline{AB} \cong \overline{NO}$, $\overline{BC} \cong \overline{MN}$, $\overline{AC} \cong \overline{MO}$ 24. Show $\triangle ABD \cong \triangle CDB$ for a = 3.



Complete the proof.

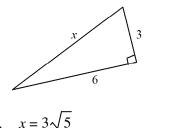

AB = a + 7 = [1] = 10 CD = 4a - 2 = [2] = 12 - 2 = 10 AD = 6a - 2 = 6(3) - 2 = 18 - 2 = [3] $\frac{CB}{AB} \cong \overline{CD}. \ \overline{AD} \cong \overline{CB}. \ \overline{BD} \cong \overline{BD}$ by the Reflexive Property of Congruence. So $\Delta ABD \cong \Delta CDB$ by [5].

a.	$ \begin{array}{l} [1] a + 7 \\ [2] 4a - 2 \\ [3] 16 \\ [4] 16 \\ [5] SAS \end{array} $	c.	[1] 3+7 [2] 4(3)-2 [3] 16 [4] 16 [5] SAS
b.	[1] 3+7 [2] 4(3)-2 [3] 26 [4] 26 [5] SSS	d.	[1] 3+7 [2] 4(3)-2 [3] 16 [4] 16 [5] SSS

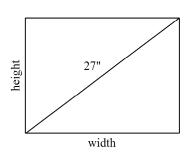

25. Determine if you can use the HL Congruence Theorem to prove $\triangle ACD \cong \triangle DBA$. If not, tell what else you need to know.

- a. Yes.
- b. No. You do not know that $\angle C$ and $\angle B$ are right angles.
- c. No. You do not know that $\overline{AC} \cong \overline{BD}$.
- d. No. You do not know that $\overline{AB} \parallel \overline{CD}$.

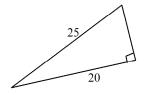
26. Which of the following is **not** a positioning of a right triangle with leg lengths of 4 units and 5 units?



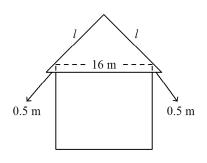
- a. $m \angle 1 = 54^{\circ}, m \angle 2 = 117^{\circ}, m \angle 3 = 63^{\circ}$
- b. $m \angle 1 = 117^{\circ}, m \angle 2 = 63^{\circ}, m \angle 3 = 63^{\circ}$
- c. $m \angle 1 = 54^{\circ}, m \angle 2 = 63^{\circ}, m \angle 3 = 63^{\circ}$
- d. $m \angle 1 = 54^{\circ}, m \angle 2 = 63^{\circ}, m \angle 3 = 117^{\circ}$


28. Find the orthocenter of $\triangle ABC$ with vertices A(1, -3), B(2, 7), and C(-2, -3).

a.
$$(2, -\frac{17}{5})$$
c. $(2, -\frac{16}{5})$ b. $(2, -\frac{13}{5})$ d. $(2, -\frac{11}{5})$


_ 29. Find the value of x. Express your answer in simplest radical form.

- a. $x = 3\sqrt{5}$ c. $x = 3\sqrt{3}$ b. $x = 9\sqrt{5}$ d. $x = 5\sqrt{3}$
- _____ 30. The size of a TV screen is given by the length of its diagonal. The screen aspect ratio is the ratio of its width to its height. The screen aspect ratio of a standard TV screen is 4:3. What are the width and height of a 27" TV screen?



- a. width: 21.6 in., height: 16.2 in.
- b. width: 16.2 in., height: 21.6 in.
- c. width: 21.6 in., height: 5.4 in.
- d. width: 5.4 in., height: 21.6 in.
- _____ 31. Find the missing side length. Tell if the side lengths form a Pythagorean triple. Explain.

- a. The missing side length is 15. The side lengths form a Pythagorean triple because they are nonzero whole numbers that satisfy the equation $a^2 + b^2 = c^2$.
- b. The missing side length is 32.02. The side lengths do not form a Pythagorean triple because one of them is not a nonzero whole number.
- c. The missing side length is 5. The side lengths form a Pythagorean triple because they are nonzero whole numbers that satisfy the equation $a^2 + b^2 = c^2$.
- d. The missing side length is 32.02. The side lengths form a Pythagorean triple because they satisfy the equation $a^2 + b^2 = c^2$.

- _____ 32. Tell if the measures 6, 14, and 13 can be side lengths of a triangle. If so, classify the triangle as acute, right, or obtuse.
 - a. Yes; acute triangleb. Yes; obtuse trianglec. Yes; right triangled. No.
 - _____ 33. Find all the values of k so that (-3, 4), (-8, 5), and (-5, k) are the vertices of a right triangle.
 - a. k = -6, 1, 9, 20c. k = -5, 1, 9, 19b. k = -5, 2, 7, 19d. k = -6, 2, 7, 20
 - _____ 34. An architect designs the front view of a house with a gable roof that has a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle shape. The overhangs are 0.5 meter each from the exterior walls, and the width of the house is 16 meters. What should the side length *l* of the triangle be? Round your answer to the nearest meter.

a.	12 m	c.	24 m
b.	11 m	d.	23 m

ID: A

Geometry Midterm Review 19-20 Answer Section

MULTIPLE CHOICE

1.	ANS:	C REF: 19313ea6-4683-11df-9c7d-001185f0d2ea
	OBJ:	1-2.1 Finding the Length of a Segment
	TOP:	1-2 Measuring and Constructing Segments
2.	ANS:	B REF: 193379f2-4683-11df-9c7d-001185f0d2ea
	OBJ:	1-2.2 Copying a Segment TOP: 1-2 Measuring and Constructing Segments
3.	ANS:	B REF: 19383eaa-4683-11df-9c7d-001185f0d2ea
	OBJ:	1-2.5 Using Midpoints to Find Lengths
	TOP:	1-2 Measuring and Constructing Segments
4.		B REF: 193aa106-4683-11df-9c7d-001185f0d2ea
	OBJ:	1-3.1 Naming Angles TOP: 1-3 Measuring and Constructing Angles
5.	ANS:	
	OBJ:	1-4.1 Identifying Angle Pairs TOP: 1-4 Pairs of Angles
6.	ANS:	
	OBJ:	1-4.4 Problem-Solving Application TOP: 1-4 Pairs of Angles
7.	ANS:	
	OBJ:	1-5.1 Finding Perimeter and Area TOP: 1-5 Using Formulas in Geometry
8.	ANS:	A REF: 1954dafa-4683-11df-9c7d-001185f0d2ea
		1-6.2 Finding the Coordinates of an Endpoint
		1-6 Midpoint and Distance in the Coordinate Plane
9.	ANS:	
		1-6.4 Finding Distances in the Coordinate Plane
		1-6 Midpoint and Distance in the Coordinate Plane
10.	ANS:	
		2-1.2 Making a Conjecture TOP: 2-1 Using Inductive Reasoning to Make Conjectures
11.		A REF: 19c2ae92-4683-11df-9c7d-001185f0d2ea
		2-1.4 Finding a Counterexample TOP: 2-1 Using Inductive Reasoning to Make Conjectures
12.	ANS:	
		2-2 Conditional Statements
13.	ANS:	
		2-4 Biconditional Statements and Definitions
14.	ANS:	
		2-5.2 Problem-Solving Application TOP: 2-5 Algebraic Proof
15.		B REF: 19e8ad42-4683-11df-9c7d-001185f0d2ea
1.0		2-6 Geometric Proof
16.	ANS:	
		2-7-Ext.1 Analyzing Truth Values of Conjunctions and Disjunctions
17		2-7-Ext. Introduction to Symbolic Logic
1/.	ANS:	
	TOP:	3-1 Lines and Angles

18.	ANS:	C REF: 1a24483e-4683-11df-9c7d-001185f0d2ea
	OBJ:	3-2.1 Using the Corresponding Angles Postulate
	TOP:	3-2 Angles Formed by Parallel Lines and Transversals
19.	ANS:	A REF: 1a2b6f52-4683-11df-9c7d-001185f0d2ea
	OBJ:	3-3.1 Using the converse of the Corresponding Angles Postulate
	TOP:	3-3 Proving Lines Parallel
20.	ANS:	D REF: 1a3e8232-4683-11df-9c7d-001185f0d2ea
	OBJ:	3-6.1 Writing Equations of Lines TOP: 3-6 Lines in the Coordinate Plane
21.	ANS:	A REF: 1a4346ea-4683-11df-9c7d-001185f0d2ea
	OBJ:	3-6.4 Problem-Solving Application TOP: 3-6 Lines in the Coordinate Plane
22.	ANS:	A REF: 1a6bcf06-4683-11df-9c7d-001185f0d2ea
	OBJ:	4-3.3 Applying the Exterior Angle Theorem
		4-3 Angle Relationships in Triangles
23.	ANS:	A REF: 1a7093be-4683-11df-9c7d-001185f0d2ea
	OBJ:	4-4.1 Naming Congruent Corresponding Parts TOP: 4-4 Congruent Triangles
24.	ANS:	D REF: 1a7c7f8a-4683-11df-9c7d-001185f0d2ea
	OBJ:	4-5.3 Verifying Triangle Congruence
	TOP:	4-5 Triangle Congruence: SSS and SAS
25.	ANS:	A REF: 1a8608fa-4683-11df-9c7d-001185f0d2ea
	OBJ:	4-6.4 Applying HL Congruence TOP: 4-6 Triangle Congruence: ASA, AAS, and HL
26.	ANS:	B REF: 1a8fb97a-4683-11df-9c7d-001185f0d2ea
	OBJ:	4-8.1 Positioning a Figure in the Coordinate Plane
	TOP:	4-8 Introduction to Coordinate Proof
27.	ANS:	C REF: 1a9de092-4683-11df-9c7d-001185f0d2ea
	TOP:	4-9 Isosceles and Equilateral Triangles
28.	ANS:	A REF: 1ade6756-4683-11df-9c7d-001185f0d2ea
	OBJ:	5-3.3 Finding the Orthocenter TOP: 5-3 Medians and Altitudes of Triangles
29.	ANS:	A REF: 1af8a14a-4683-11df-9c7d-001185f0d2ea
	OBJ:	5-7.1 Using the Pythagorean Theorem TOP: 5-7 The Pythagorean Theorem
30.	ANS:	A REF: 1afadc96-4683-11df-9c7d-001185f0d2ea
	OBJ:	5-7.2 Application TOP: 5-7 The Pythagorean Theorem
31.	ANS:	A REF: 1afd3ef2-4683-11df-9c7d-001185f0d2ea
	OBJ:	5-7.3 Identifying Pythagorean Triples TOP: 5-7 The Pythagorean Theorem
32.	ANS:	A REF: 1afd6602-4683-11df-9c7d-001185f0d2ea
	OBJ:	5-7.4 Classifying Triangles TOP: 5-7 The Pythagorean Theorem
33.	ANS:	D REF: 1affa14e-4683-11df-9c7d-001185f0d2ea
	TOP:	5-7 The Pythagorean Theorem
34.	ANS:	A REF: 1b022aba-4683-11df-9c7d-001185f0d2ea
	OBJ:	5-8.2 Application TOP: 5-8 Applying Special Right Triangles